Presence in Virtual Reality: Why does it feel so real?

If you have ever tried Virtual Reality (VR) and wondered why did it feel so real then this blog-post is for you!

Although presence is an everyday phenomenon of being in the here and now, alive in a real world, the same concept is applied to the feeling of being inside VR. Here we will concentrate only on the experience of presence inside VR. 

Last summer, me and my friend while walking down the crowded seaside boulevard in Georgia, suddenly noticed a weird bench looking like a part of a wrecked roller coaster, emitting irritating noise. We got closer and to our surprise, we read – “Experience Virtual Reality- for only 5 Gel”. I got excited, so decided to open “The Doors of Perception” of VR. A nice lady renting the device put huge goggles and headphones on my head and fastened me tightly on the bench. “Goggles?” – “ok!”, “Headphones?”- “ok!”, but what the hell is belt needed for? Soon after, I was frankly thankful for being tightly fastened. As the lady finished with belting, she turned some buttons on and the bench started swinging and vibrating. The funny noise started roaring in my ears. In goggles, I was watching at somebody rushing down on a roller coaster. That’s all ok, but suddenly I realized, that I was crawling back on the bench trying to keep myself from falling. It was me on the roller coaster and I was really afraid not to fall down from it.  My brain was tricked and so was my body: increased heart rate and pulsation, sweating hands – perhaps all the symptoms that would have actually accompanied the real experience with the roller coaster.

So what happened with my brain on that funny VR bench?

I’d like to use this blog-post as an opportunity to answer this question. To investigate what is already known about how VR tricks our brain, and consequently why does it feel so real.

Presence  in VR

The first two terms I came across while digging into scholarly articles about VR were “presence” and “immersion”. Although sometimes these terms are used as synonyms, I’d prefer to share the viewpoint of those theoreticians who differentiate between them. Immersion deals with how technically developed the VR equipment is.  While presence in VR, on the other hand, is defined as a psychological and physiological sensation of a user of actually being into VR. There is a considerable body of research, suggesting that the more immersive the VR environment is (i.e. a good sound system, large 3d screen, the possibility of active navigation) the level of experienced presence increases.

Although cognitively you know very clearly that what you see is not real, still can not help the feeling that you are actually there, in the environment that does not exist. Like that weird feeling when suddenly in your dreaming, not even waking up, you realize that’s all just a dream, but still can not wake up.

virtual-reality
PixaBay (CC0 1.0)

Well, now we can feel more relaxed knowing that this feeling has a name, and it’s called presence. Moreover, there even exists a whole international society interested in studying this concept.

Actually, the term (tele)presence, was first used by Marvin Minsky back in 1980 while speaking about the perspectives of human- technology interaction  : –

“The biggest challenge to developing telepresence is achieving that sense of “being there.” Can telepresence be a true substitute for the real thing? Will we be able to couple our artificial devices naturally and comfortably to work together with the sensory mechanisms of human organisms?“

Brain substrates of VR presence

Until now, there are widely used subjective and just developing objective measures of presence. The first implies self-report ratings during actually being in the VR, and after experience questionnaires. These ratings might differ by their effectiveness. Some studies indicate that ratings during the experience are more effective compared to post presence questionnaires as feelings are livelier and memory effects play no negative role in evaluating the actual experience. But still, they are both subjective, thus provide no perfectly reliable data for measurement.

Thanks to technological development, it is now possible to measure presence more objectively. It can be done either by observing bodily reactions of the users (measuring heart rate or skin conductance) or by different brain imaging techniques. Following our aim to find out how the brain is tricked by virtual reality, let’s concentrate on the latter.

brain
Twenty20, royalty-free

In 2006, the first EEG study was conducted with a group of children and adults watching a roller coaster in VR with different immersive conditions in order to detect the neurophysiological underpinnings of presence. Although children reported a stronger sense of presence, the results indicated that in both groups the strong presence experience was correlated with higher activations in the parietal brain areas (known to be involved in spatial processing, navigation, body-centered representation of space and visuomotor control). Another important finding was that, in comparison to youngsters, adults showed stronger activation in the prefrontal areas (known to be responsible for control of executive functions). This might be explained by the assumption that activation in the frontal brain regions causes critical evaluation of VR stimuli in adults. The same pattern isn’t observable in children as the prefrontal brain areas aren’t yet fully developed at their age. Results indicated also the important role of insula in experiencing presence. Insula, the brain region placed deep between the parietal, frontal and temporal lobes, is known to be involved in modulating body related sensations, attention, and self-awareness. Another brain structure associated with the parietal lobe that showed significantly increased activation during strong sense of presence was posterior cingulate gyrus (among different functions involved in processing emotional stimulus, episodic memory, spatial attention). Authors state that increased activation in the parietal cortex while experiencing presence can be explained by stimulating the emotional centers through different pathways, including cingulate gyrus, which generates emotions like fear and joy.  This consequently might lead to an increased presence experience in VR.

Since presence can be defined as body-centered spatial experience in VR, it can be assumed that the parietal cortex plays a crucial role in experiencing it. In other words, it would be logical to think that the parietal brain regions modulate body-centered perspective of VR by gathering information from different sensory systems and thus form the comprehensive representation of space.

2 years later, the same authors repeated their study this time using fMRI. Results indicated that the prefrontal regions namely Dorsolateral Prefrontal Cortex (DLPFC) inhibit the sense of presence in adults. Again as in the previous study, this pattern was not observable in youngsters. DLPFC unites brain areas that are known to be involved in attention modulation, cognitive control and is highly interconnected with the parietal brain regions. In comparison to children, adults have fully developed prefrontal brain regions, thus their DLPFC manages to control the activities in the parietal lobe more effectively. Hence the authors assume that it can inhibit the sense of presence in VR by critically evaluating the VR stimuli.

More recent findings add credibility to the previous ones. The study from 2013, also reports the increase in activation in the parietal lobe and in insula during the strong experience of presence.  While another one stresses the relationship between an increase in the presence experience and decrease in activity of those brain regions, namely DLPFC, responsible for controlling attentional recourses. Hence, it can be stated that strong sense of presence is accompanied by accumulating attentional recourses towards VR environment at the expense of ignoring the outer real world.

Another evidence that insula plays one of the key roles in experiencing presence comes from an interesting model, where presence is viewed as an everyday phenomenon and studied in line with schizophrenia and Depersonalization Disorder (DPD). Here these mental disorders are described as states of “disturbed presence”. According to the model, the crucial phenomenon for presence is a continuous prediction of emotional states generated in insula. E.g. when a frightening stimulus is anticipated, the innate prediction of the organism is anxiety, accompanied by an adequate bodily reaction. When the actual frightening stimulus is present, the organism compares between an anticipated state and actual state of the body. The author argues that there will always be a mismatch between predicted and actual state, however strong sense of presence is the result of “successful suppression of this mismatch between the predicted and actual interoceptive state”. The assumption of the author that insula is the basic brain organ generating a sense of presence can be validated by the data that insular activity in DPD is abnormally low.

And still, why does it feel so real?

Well, deriving from the literature the answer on our question why VR seems so real might be that immersive VR technology causes increased parietal and insular activity and inhibits the frontal brain activity. In other words, it can be assumed that strong sense of presence is in a positive relationship with the parietal brain activity that forms the body-centered perspective of VR by accumulating information from different sensory systems. The positive relationship is also present with insular activity that’s responsible for successful repression of perceiving error between the predicted and actual bodily state. While on the other hand, the sense of presence is likely in negative correlation with activation of DLPFC what causes impaired cognitive control and attention modulation.

matrix
PixaBay(CC0 1.0)

But still, there remain a number of questions, like e.g. individual differences in experiencing presence unanswered. This makes it obvious that studying presence or VR is in its infancy and there is a huge need for continuing research towards this direction.

Combining VR and brain-imaging techniques provide the possibility to simulate real situations, induce actions, emotions under the full control of the experimenter, and to measure the underlying brain processes. Hence, considering presence as being a “fundamental property of consciousness” studying it in VR provides the unique possibility to study our sense of being in the here and now, being alive in the real world.

Featured image: PixaBay (CC0 1.0)

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s